Categories

Archive

Tags

3d printing prosthetics 3D printing environment medicine architecture biotechnology prototyping medicine 3D scanning art food sustainability food biomedicine architecture 3d printing modelling animals news toys housing accessibility prosthetics forensics robots 3D scanning biomedicine selfies CGI drones solar cells laser scanning sustainability education robotics bioprinting printed food crime model making fashion stereolithography stereolithography flowers vacuum casting rapid prototyping beauty rapid prototyping miniatures surgery military body parts electronics military renewable energy TCFG MultiFab printer instruments construction home design 3d scanning 4D printing artificial intelligence archaeology restoration lego biomimicry mattel climate change biodiversity drones cosmetics design nanotechnology medical applications conservation CG innovation preservation bioprinting oceans sports transport developing countries prototyping assistive technology tabletop animal prosthetics vehicles creative apps laser scanners smartphone technology smartphones packaging personalisation fishing gaming music september developing world instruments medical supplies october tips starter guide ornaments filament decoration interior design costume cosplay multi-material printing off-grid ProJet MJP 3600 Printer materials archaeology gaming rockets technology home printers spines glass robots dangers firearms guns Skyscrapers Trump cycling surgery Great Barrier Reef building cities cancer lego make up films space full colour desktop jewellery ethics makeup plants travel future cellulose. eco friendly vegetables makeup beauty submarines stem cells bioethics 3Doodler developing world humanitarian aid sweets materials fitness money 3d printing news animal testing ocean exploration hydroponics agriculture bones baldness cure amazon pets printable objects halloween farming trainers animated film space F1 film industry study plastic surgery gun masks history art culinary fashion bridge oven motorbikes castles printed buildings engineering replacement teeth workplace hazards vehicles drugs printers cars automotive electronics musical instruments 3d Printing design software planning Escher printed housing modular architecture short run productions van gogh creative process 3D printing obama 3D printing and heart surgery replica pet models printing plants 3D printed chocolate 3D printed weapons earthquake-proof 3D printed column 3D metal printing decorations christmas 3D metal printers 3D printed dog noses 3D vases quadcopter project 3D printing women's makeup printing lipstick spooky selfies 3D printed jack-o-lantern competition Amazon 3D Printing Store 3D printed furniture 3D skulls and pumpkins houses short-run production tabletop games animal figures bjarki hallgrimsson 3d printer 3d models tabletop wargames 3d printed implants model prototype 3d printed prototypes traditional model making mini-you fabrication labs UAV body on a chip testable models 3d printed jewelry investment casting vacuum casting mars attacks mantic 3d figurines 3d selfies eco-friendly wedding cakes 3d print production prototypes household appliance recycling prototype 3D concept pizza tabletop gaming short run productions astronauts natural machines 3D glasses chefjet gifts PD Models interview live puppeteering terminator 2 star wars Jurassic Park Alien 3 Jar Jar Binks Gollum medical technology 3D computer graphics cinema eyes drill terminator news robotic arm CG modelling 3D models dancing robot creativity dust UV resin Carbon3D CV interviews office politics contact digitising conservation jobs creative business careers CAD digital sculpting metal powder digital migration Rolex 3d printed selfies jewelry 3D printing industry 3D modelling mining in space 3D topography maps 3D printing in mining motion art kinetic art superhero prosthethics 3D printed Batman suit 3D printed sculpture 3D printed dinosaur 3D printed food 3D printed bananas 3D printed urns 3D printed table accessories 3D printed ergonomic keyboard 3D printed laptop 3D printing in space design thinking design 3D printed mansion 3D printed prototyping 3D rendering 3D modelling wood project mosul statue 123D tool suite netfabb Hatra moon dust moon bases reprap recyclebot 3d printed mea SWaCH children medical use 3D print show Voxel8

3D printed superbikes

3D printed superbikes

Needing to withstand the falls and obstacles of the roads and trails, motorbikes need to be sturdy and resistant to damage. An ideal motorcycle is high-powered; but traditional manufacturing methods can only take us so far. Motorbike manufacturers are now turning to 3D printing technologies to help them design motorbike models that are lightweight, high-powered, and resilient. Below, we explore some of the best new motorbike innovations on the market.

The Energica Ego Electric Superbike

CRP Group developed the first 3D-printed electric superbike, dubbed the Energica Ego electric superbike, which took only two years to be designed and built. The bike was developed using Windform Additive Manufacturing, that can be used to create internal truss structures. This form of manufacturing guarantees structures that are both strong and light: ideal for motorbike touring and racing.

The TE Connectivity Motorcycle

TE Connectivity have been hailed as the first US company to design and build a 3D-printed motorcycle. Impressively, the entire bike’s frame, its tank, and wheels, were all printed in plastic. The manufacturers then added the wiring, battery, belt drive, tyres, brakes, side stand, and high-powered electric motor; making for impressive manufacturing speed and ease. According to the manufacturers, it took just 1000 hours to design and print the bike.

The Light Rider

In comparison, a German company - APWorks, have designed and produced a super-light, high-powered 3D printed electric motorcycle: named the Light Rider.

3D printing technology has allowed the design to take on many unique attributes: The bike was developed using Scalmalloy, which is resilient to breakdown and is a strong as sturdier metals, such as  titanium. The bike weighs just 35 kilograms, which is up to 30% lighter than the standard motorcycle; 3D printing technology allowed the designers to keep the weight of the bike to a minimum, while also ensuring that it was able to handle heavier loads. This combination has allowed for style and strength to combine; presenting a design that it totally unique in it’s appearance, and impressive in its abilities. The bike’s look has been described as, “more like an organic exoskeleton than a machine”.

In addition, the bike has been noted for its speed: which reaches 80 kilometres per hour, powered by a 6 kW electric motor. The bike is also incredibly powerful, as it can run from 0-45km/h in just three seconds.

APWorks' CEO Joachim Zettler, delves into the unique qualities of the design: "The complex and branched hollow structure couldn't have been produced using conventional production technologies such as milling or welding. Advances in additive layer manufacturing have allowed us to realise the bionic design we envisioned for the motorcycle without having to make any major changes. With these technologies, the limitations facing conventional manufacturing disappear."

A new era

3D printing technology allows for innovative new designs in the world of motorcycling: giving way for the construction of models that are super-light way, stylish, and high-powered.

Tagged with: motorbikes, engineering