Categories

Archive

Tags

3d printing prosthetics 3D printing environment medicine architecture biotechnology prototyping medicine 3D scanning art food sustainability food biomedicine architecture 3d printing modelling animals news toys housing accessibility prosthetics forensics robots 3D scanning biomedicine selfies CGI drones solar cells laser scanning sustainability education robotics bioprinting printed food crime model making fashion stereolithography stereolithography flowers vacuum casting rapid prototyping beauty rapid prototyping miniatures surgery military body parts electronics military renewable energy TCFG MultiFab printer instruments construction home design 3d scanning 4D printing artificial intelligence archaeology restoration lego biomimicry mattel climate change biodiversity drones cosmetics design nanotechnology medical applications conservation CG innovation preservation bioprinting oceans sports transport developing countries prototyping assistive technology tabletop animal prosthetics vehicles creative apps laser scanners smartphone technology smartphones packaging personalisation fishing gaming music september developing world instruments medical supplies october tips starter guide ornaments filament decoration interior design costume cosplay multi-material printing off-grid ProJet MJP 3600 Printer materials archaeology gaming rockets technology home printers spines glass robots dangers firearms guns Skyscrapers Trump cycling surgery Great Barrier Reef building cities cancer lego make up films space full colour desktop jewellery ethics makeup plants travel future cellulose. eco friendly vegetables makeup beauty submarines stem cells bioethics 3Doodler developing world humanitarian aid sweets materials fitness money 3d printing news animal testing ocean exploration hydroponics agriculture bones baldness cure amazon pets printable objects halloween farming trainers animated film space F1 film industry study plastic surgery gun masks history art culinary fashion bridge oven motorbikes castles printed buildings engineering replacement teeth workplace hazards vehicles drugs printers cars automotive electronics musical instruments 3d Printing design software planning Escher printed housing modular architecture short run productions van gogh creative process 3D printing obama 3D printing and heart surgery replica pet models printing plants 3D printed chocolate 3D printed weapons earthquake-proof 3D printed column 3D metal printing decorations christmas 3D metal printers 3D printed dog noses 3D vases quadcopter project 3D printing women's makeup printing lipstick spooky selfies 3D printed jack-o-lantern competition Amazon 3D Printing Store 3D printed furniture 3D skulls and pumpkins houses short-run production tabletop games animal figures bjarki hallgrimsson 3d printer 3d models tabletop wargames 3d printed implants model prototype 3d printed prototypes traditional model making mini-you fabrication labs UAV body on a chip testable models 3d printed jewelry investment casting vacuum casting mars attacks mantic 3d figurines 3d selfies eco-friendly wedding cakes 3d print production prototypes household appliance recycling prototype 3D concept pizza tabletop gaming short run productions astronauts natural machines 3D glasses chefjet gifts PD Models interview live puppeteering terminator 2 star wars Jurassic Park Alien 3 Jar Jar Binks Gollum medical technology 3D computer graphics cinema eyes drill terminator news robotic arm CG modelling 3D models dancing robot creativity dust UV resin Carbon3D CV interviews office politics contact digitising conservation jobs creative business careers CAD digital sculpting metal powder digital migration Rolex 3d printed selfies jewelry 3D printing industry 3D modelling mining in space 3D topography maps 3D printing in mining motion art kinetic art superhero prosthethics 3D printed Batman suit 3D printed sculpture 3D printed dinosaur 3D printed food 3D printed bananas 3D printed urns 3D printed table accessories 3D printed ergonomic keyboard 3D printed laptop 3D printing in space design thinking design 3D printed mansion 3D printed prototyping 3D rendering 3D modelling wood project mosul statue 123D tool suite netfabb Hatra moon dust moon bases reprap recyclebot 3d printed mea SWaCH children medical use 3D print show Voxel8

Crime fighting using 3D printers

Crime fighting using 3D printers

In our past posts, we delved into the world of crime and 3D printing. 3D printers can potentially be used to create counterfeit money and makeshift weapons, but 3D printers can also be used to solve and prevent a range of crimes that can’t easily be solved, or tackled, using current methods.

3D printing - the future of forensic science and crime prevention?

Many predict that 3D printing will help transform the way we approach crime prevention and solving crime - we will be able to prevent and solve crime in a way that we could not previously, as the writers at 3D Printer note:  

“It’s not all bad though. 3D printing is also be utilized to thwart the malicious efforts of evildoers. Forensic engineer and owner of AI2-3D, Eugene Liscio, does well explaining the benefits of employing 3D printers in criminal investigations and court trials. From printing 3D scans of footprints to recreating crime scenes to producing enlarged 3D fingerprints to visualizing projectile trajectories and extrapolating facial appearance from skull structures, 3D printing will surely become a standard forensic tool.”

Saving rhinos from illegal poachers

Just as counterfeit cash brings down the value of real money, counterfeit commodities undermine the value of genuine items out on the market. But, Californian 3D printing company Pembient, hopes to use this to their advantage when it comes to the illegal poaching of rhino’s.

The company has figured out a way to use keratin and rhino DNA to bioprint rhino horns which replicate the look of the real deal. The company hope to mass produce these counterfeit rhino horns in the hope that they will bring down the value of the real rhino horns, thus hopefully putting illegal poachers off of hunting rhinos for their horns.

Rhino

Solving murder cases

The Central Identification Laboratory of the Joint POW/MIA Accounting Command (JPAC) are using 3D printers to help identify dead soldiers, as Forensic Mag note:

“They have a mission to identify the remains of American soldiers from past military conflicts. Among the lab’s tools for forensic identification are multicolor 3D printers. For example, JPAC prints a model of a skull using digital information from CT scans of the remains. The 3D printed skull is then photographed from multiple angles and superimposed with photographs of known soldiers to gauge potential matches, a process called ‘skull photographic superimposition.”

The successful use of this technology has implications for solving murder cases, as it could easily be used in cases where human remains were found and a body needed to be identified.

In the UK’s first ever case of its kind, Detective Superintendent Mark Payne and Professor Mark Williams, at WMG’s metrology, used 3D printing technology to solve a difficult murder case.

A 34 year old man was suspected of murdering another man, breaking apart his remains and throwing them off a bridge, in a suitcase. Police were convinced that the man was responsible, but didn’t have any evidence to back their convictions. The police found remains on the man’s property, but how did they prove it belonged to the murder victim? Using 3D printing technology the researchers used 3D printed version of his’ fragmented limbs and found the remains at the murder suspect’s property fitted perfectly with the victim’s remains.

This case shows how 3D printing can help us to solve cases quickly and more easily, filling in the gaps in evidence that are difficult or opposite to achieve otherwise.

A new wave of forensics and crime resolution

3D printing technology can help us prevent and solve crimes in a variety of areas. We are already seeing big developments in this area thanks to the use of the technology.

Tagged with: crime, forensics