Categories

Archive

Tags

3d printing prosthetics 3D printing environment medicine architecture biotechnology prototyping medicine 3D scanning art biomedicine food architecture 3d printing sustainability modelling food animals news toys housing robots forensics crime accessibility biomedicine CGI drones solar cells prosthetics 3D scanning robotics fashion education model making printed food stereolithography sustainability bioprinting laser scanning stereolithography military miniatures rapid prototyping body parts rapid prototyping electronics surgery vacuum casting military selfies flowers beauty bioprinting 4D printing 3d scanning archaeology artificial intelligence lego CG TCFG MultiFab printer renewable energy medical applications climate change preservation conservation mattel home design biomimicry instruments biodiversity oceans drones construction 3d printing news cosmetics nanotechnology design innovation sports vehicles assistive technology restoration transport gaming tabletop creative smartphones smartphone technology personalisation packaging laser scanners developing countries apps animal prosthetics fishing instruments starter guide tips october medical supplies developing world costume music filament september ornaments decoration cosplay interior design multi-material printing materials materials archaeology glass Printer ProJet MJP 3600 spines rockets gaming robots cycling firearms guns stem cells dangers Skyscrapers surgery Great Barrier Reef Trump home printers technology make up ethics makeup lego cancer jewellery space films makeup beauty future cities building travel plants submarines vegetables cellulose. eco friendly bioethics plastic surgery developing world humanitarian aid animal testing 3Doodler sweets money off-grid Voxel8 ocean exploration pets agriculture bones replacement teeth hydroponics baldness cure printable objects halloween amazon fitness farming space F1 history animated film film industry gun masks study art castles fashion bridge trainers culinary oven printed buildings engineering motorbikes prototyping metal powder vehicles drugs printers cars automotive electronics musical instruments 3d Printing design software planning Escher printed housing modular architecture short run productions van gogh creative process 3D printing obama 3D printing and heart surgery replica pet models 3D printed chocolate 3D printed weapons 3D printed dog noses printing plants earthquake-proof 3D printed column christmas 3D metal printers 3D metal printing 3D vases Amazon 3D Printing Store quadcopter project 3D printing women's makeup printing lipstick spooky selfies 3D printed jack-o-lantern competition 3D printed furniture 3D skulls and pumpkins houses short-run production tabletop games animal figures bjarki hallgrimsson 3d printer 3d models tabletop wargames 3d printed implants model prototype 3d printed prototypes traditional model making mini-you fabrication labs UAV body on a chip testable models 3d printed jewelry investment casting vacuum casting mars attacks mantic 3d figurines 3d selfies eco-friendly wedding cakes 3d print production prototypes household appliance recycling prototype 3D concept pizza tabletop gaming short run productions astronauts natural machines 3D glasses chefjet decorations gifts terminator 2 star wars 3D computer graphics live puppeteering Jurassic Park Gollum medical technology Alien 3 cinema CG modelling drill terminator 3D printing industry eyes news 3D models dancing robot robotic arm Jar Jar Binks creativity Carbon3D CV creative business UV resin interviews conservation jobs office politics careers 3d printed selfies digital sculpting workplace hazards dust CAD digital migration jewelry Rolex 3D modelling 123D tool suite 3D topography maps 3D printing in mining 3D printed dinosaur mining in space motion art 3D printed Batman suit 3D printed sculpture kinetic art 3D printed food 3D printing in space 3D printed urns 3D printed table accessories PD Models interview 3D printed bananas 3D printed ergonomic keyboard design thinking design 3D printed laptop superhero prosthethics 3D printed mansion 3D modelling wood moon dust 3D rendering project mosul netfabb Hatra statue moon bases medical use recyclebot 3d printed mea 3D printed prototyping reprap SWaCH 3D print show children contact digitising

3D bioprinting breakthrough

3D bioprinting breakthrough

3D printing is seeing some incredible advancements and is currently one of the leading technologies in a variety of fields. Some of the greatest potentials for this technology is seen in the medical field.

3D bioprinting involves the printing of organs, ready for organ transplants in patients that need them. Scientists have been working hard to utilise 3D printing in organ donation and since the early 2000s there have been a growing number of medical and scientific trials undertaken on this area.

However, scientists have faced some issues in their quest for useable 3D printed organs. The biggest issue that the medical field has faced when seeking to make 3D printed organs a viable option for organ transplants, is that most of these organs cannot be sustained for prolonged periods by the body; over time the printed organs disintegrate.

But in 2016, we came closer to revolutionising organ transplants, as scientists came closer to printing organs and bio-material that could be readily accepted by the body.

In 2016, scientists undertook research that involved designing bone, muscle and cartilage. These designs were later successfully tested on animals and unlike in previous instances, they were fully accepted by the animals’ bodies.

The BBC delved into the science behind these designs: “The team at Wake Forest Baptist Medical Centre developed a new technique that 3D-prints a tissue riddled with micro-channels, rather like a sponge, to allow nutrients to penetrate the tissue.

The Integrated Tissue and Organ Printing System - or ITOP - combines a biodegradable plastic which gives the structure and a water-based gel, which contains the cells, and encourages them to grow.

When the structures were implanted into animals, the plastic broke down as it was replaced by a natural, structural "matrix" of proteins produced by the cells.”

Customisation

In addition, 3D printing technology can allow scientists and medical professionals to design bodyparts that specifically fit the needs and demands of the individual patient.

Smithsonian explores how this customisation works in more detail: “Jackson oversees the development of a skin-cell printer, which is designed to print a range of living skin cells directly onto a patient. “Say you have an injury to your skin,” Jackson suggested. “You’d scan that wound to get the exact size and shape of the defect, and you’d get a 3-D image of the defect. You could then print the cells”—which are grown in a hydrogel—“in the exact shape you need to fit the wound.” Right now, the printer can lay down tissues at the top two layers of skin, deep enough to treat—and to heal—most burn wounds.”

New Advancements

3D bioprinting is still in it’s infancy, yet the results so far look incredibly promising and could realistically promise some incredible advancements in medicine in the foreseeable future.

Tagged with: bioprinting, medicine