Categories

Archive

Tags

3d printing prosthetics 3D printing environment medicine biotechnology 3D scanning food art food modelling prototyping 3d printing architecture sustainability biomedicine animals news housing toys medicine architecture model making prosthetics forensics crime biomedicine solar cells stereolithography bioprinting sustainability drones accessibility CGI selfies military military printed food electronics robots 3D scanning robotics laser scanning rapid prototyping body parts vacuum casting stereolithography miniatures rapid prototyping animal prosthetics fishing decoration vacuum casting ornaments filament vehicles apps laser scanners smartphones creative interior design transport starter guide lego artificial intelligence 4D printing renewable energy innovation body on a chip archaeology testable models smartphone technology costume tips developing world multi-material printing medical supplies cosplay personalisation Voxel8 animal figures contact digitising 3d printing news construction CG bioprinting conservation jobs CV creative business Carbon3D UV resin office politics interviews TCFG MultiFab printer 3d scanning gaming investment casting september tabletop assistive technology packaging developing countries 3d printed jewelry music 3d printed prototypes bjarki hallgrimsson traditional model making sports instruments october medical applications drones castles printed buildings engineering art history space F1 motorbikes oven farming fitness trainers bridge culinary fashion animated film film industry dangers firearms guns Skyscrapers Trump surgery Great Barrier Reef stem cells bioethics study education UAV masks plastic surgery gun money off-grid home design mattel climate change instruments biomimicry prototyping restoration preservation conservation cosmetics mini-you design nanotechnology biodiversity oceans replacement teeth bones humanitarian aid animal testing ocean exploration developing world 3Doodler materials sweets pets printable objects hydroponics agriculture fabrication labs baldness cure halloween amazon careers Rolex spooky selfies quadcopter project 3D printing women's makeup 3D printed jack-o-lantern competition 3D skulls and pumpkins Amazon 3D Printing Store 3D printed furniture printing lipstick replica pet models automotive cars 3d Printing musical instruments 3D printing and heart surgery electronics 3D vases 3D printed dog noses 3D printed table accessories PD Models interview gifts 3D printed urns 3D printed bananas 3D printed laptop 3D printed ergonomic keyboard decorations christmas 3D printed chocolate 3D printed weapons printing plants earthquake-proof 3D printed column 3D metal printers 3D metal printing vehicles mars attacks prototypes chefjet household appliance short-run production natural machines modular architecture houses 3D glasses recycling 3d selfies eco-friendly 3d figurines wedding cakes 3d print production 3D concept printed housing astronauts printers design software planning tabletop gaming drugs mantic short run productions fashion creative process short run productions Escher van gogh obama pizza 3D printing design design thinking cinema CG modelling model prototype 3D computer graphics star wars live puppeteering terminator 2 3D models dancing robot terminator 3D printing industry drill eyes robotic arm news Jurassic Park 3d models CAD digital sculpting workplace hazards digital migration tabletop games jewelry prototype metal powder dust medical technology Alien 3 3d printer Gollum creativity Jar Jar Binks 3D modelling 123D tool suite superhero prosthethics 3D printed Batman suit 3D printed sculpture 3D printed mansion 3D printed prototyping recyclebot 3d printed mea kinetic art motion art 3D printed food 3D printing in space 3D printed dinosaur 3D printing in mining mining in space 3D topography maps reprap SWaCH 3D rendering 3D modelling project mosul statue netfabb Hatra wood 3d printed implants children tabletop wargames 3D print show medical use moon dust moon bases 3d printed selfies

3D bioprinting breakthrough

3D bioprinting breakthrough

3D printing is seeing some incredible advancements and is currently one of the leading technologies in a variety of fields. Some of the greatest potentials for this technology is seen in the medical field.

3D bioprinting involves the printing of organs, ready for organ transplants in patients that need them. Scientists have been working hard to utilise 3D printing in organ donation and since the early 2000s there have been a growing number of medical and scientific trials undertaken on this area.

However, scientists have faced some issues in their quest for useable 3D printed organs. The biggest issue that the medical field has faced when seeking to make 3D printed organs a viable option for organ transplants, is that most of these organs cannot be sustained for prolonged periods by the body; over time the printed organs disintegrate.

But in 2016, we came closer to revolutionising organ transplants, as scientists came closer to printing organs and bio-material that could be readily accepted by the body.

In 2016, scientists undertook research that involved designing bone, muscle and cartilage. These designs were later successfully tested on animals and unlike in previous instances, they were fully accepted by the animals’ bodies.

The BBC delved into the science behind these designs: “The team at Wake Forest Baptist Medical Centre developed a new technique that 3D-prints a tissue riddled with micro-channels, rather like a sponge, to allow nutrients to penetrate the tissue.

The Integrated Tissue and Organ Printing System - or ITOP - combines a biodegradable plastic which gives the structure and a water-based gel, which contains the cells, and encourages them to grow.

When the structures were implanted into animals, the plastic broke down as it was replaced by a natural, structural "matrix" of proteins produced by the cells.”

Customisation

In addition, 3D printing technology can allow scientists and medical professionals to design bodyparts that specifically fit the needs and demands of the individual patient.

Smithsonian explores how this customisation works in more detail: “Jackson oversees the development of a skin-cell printer, which is designed to print a range of living skin cells directly onto a patient. “Say you have an injury to your skin,” Jackson suggested. “You’d scan that wound to get the exact size and shape of the defect, and you’d get a 3-D image of the defect. You could then print the cells”—which are grown in a hydrogel—“in the exact shape you need to fit the wound.” Right now, the printer can lay down tissues at the top two layers of skin, deep enough to treat—and to heal—most burn wounds.”

New Advancements

3D bioprinting is still in it’s infancy, yet the results so far look incredibly promising and could realistically promise some incredible advancements in medicine in the foreseeable future.

Tagged with: bioprinting, medicine